Categories
GeekWire

Nanoracks will test metal-cutting robot in space

Nanoracks hardware
An artist’s conception shows the deployment of hardware that would deploy a set of satellites and then demonstrate a robotic metal-cutting technique for in-space habitat construction. (Nanoracks Illustration)

Nanoracks says it’ll put a metal-cutting robot to work in orbit next year as part of a satellite deployment mission, marking the first in-space test of a key habitat-building technology.

All this is due to be done under the umbrella of SpaceX’s SmallSat Rideshare Program, which promises to provide a regular route to space for small satellites.

The hardware for Texas-based Nanoracks’ first in-space outpost demonstration mission is due to ride aboard a SpaceX Falcon 9 rocket in late 2020. If the demonstration works, that would mark a significant step forward for Nanoracks’ plan to convert spent rocket stages into outposts for Earth orbit and deep space.

GeekWire was the first to report on Nanoracks’ outpost concept, more than a year and a half ago. The concept envisions setting construction robots loose inside a rocket’s upper stage, such as the Centaur stage of United Launch Alliance’s Atlas 5, after its fuel has been expended.

The robots would retrofit the upper stage and its fuel tanks to accommodate an air lock, storage space and even accommodations for human occupants. Nanoracks has offered the concept for consideration in NASA’s NextSTEP-2 space habitat initiative.

Nanoracks’ NASA-funded demonstration is meant to show that a robot built by one of its NextSTEP-2 teammates, Maxar Technologies, can cut samples of second-stage tank material safely and efficiently in space.

Get the full story on GeekWire.

By Alan Boyle

Mastermind of Cosmic Log, contributor to GeekWire and Universe Today, author of "The Case for Pluto: How a Little Planet Made a Big Difference," past president of the Council for the Advancement of Science Writing.

Leave a Reply

Discover more from Cosmic Log

Subscribe now to keep reading and get access to the full archive.

Continue reading