Mirror molecules found in interstellar space

Image: Chiral molecules

The propylene oxide molecules were detected in a massive star-forming region known as Sagitttarius B2, which is close to the supermassive black hole at the center of our Milky Way Galaxy (noted as Sgr A* in this image). The white features in this composite image are bright radio sources. The background image is from the Sloan Digital Sky Survey. (Credit: B. Saxton / NRAO / AUi / NSF / NRL / SDSS)

Researchers say they’ve found the first evidence of mirror-image molecules in interstellar space – a discovery that relates to the chemistry that gave rise to life here on Earth.

The molecules of propylene oxide were detected in a huge cloud known as Sagittarius B2 North, about 28,000 light-years from Earth, during a scan that used the Green Bank Telescope in West Virginia.

Mirror-image molecules are notable because they come in left-handed or right-handed molecular orientations, like the molecules that serve as the building blocks for life on Earth. That “handedness” is known as chirality.

“This is the first molecule detected in interstellar space that has the property of chirality, making it a pioneering leap forward in our understanding of how prebiotic molecules are made in the universe and the effects they may have on the origins of life,” Brett McGuire, a chemist with the National Radio Astronomy Observatory, said in a news release.

Get the full story on GeekWire.

About Alan Boyle

Award-winning science writer, creator of Cosmic Log, author of "The Case for Pluto: How a Little Planet Made a Big Difference," president of the Council for the Advancement of Science Writing. Check out "About Alan Boyle" for more fun facts.
This entry was posted in GeekWire and tagged , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.