How to shield a probe for trip to Alpha Centauri

Image: Starshot nano-probe

An artist’s conception suggests how light from a battery of laser-equipped antennas can power a sail to the Alpha Centauri system. (Credit: Breakthrough Initiatives)

The scientists behind the Breakthrough Starshot mission are already fine-tuning the design for their nano-probes to increase the odds they’ll survive the trip to Proxima Centauri b.

In a paper posted to the arXiv pre-print server last week, researchers lay out their latest calculations on the kinds of damage their scaled-down spacecraft could face as they speed toward the Alpha Centauri system at 20 percent of the speed of light.

The mission and the study have taken on greater importance, due to this week’s announcement that a potentially habitable planet has been detected in orbit around Proxima Centauri, a red dwarf that’s part of the star system. It’s the star that’s closest to our own solar system, lying only 4.2 light-years away.

In astronomical terms, Proxima Centauri is right next door. But in mission planning terms, it’s far, far away. It would take tens of thousands of years for a conventional spacecraft to get there.

To reduce that time frame, Breakthrough Starshot has proposed sending bunches of lightweight electronic wafers, known as “Starchips.” The Starchips would be accelerated to relativistic speeds by aiming powerful lasers at film-thin light sails that carry the probes along.

Get the full story on GeekWire.

About Alan Boyle

Award-winning science writer, creator of Cosmic Log, author of "The Case for Pluto: How a Little Planet Made a Big Difference," president of the Council for the Advancement of Science Writing. Check out "About Alan Boyle" for more fun facts.
This entry was posted in GeekWire and tagged , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s